We consider event extraction in a generative manner with template-based conditional generation. Although there is a rising trend of casting the task of event extraction as a sequence generation problem with prompts, these generation-based methods have two significant challenges, including using suboptimal prompts and static event type information. In this paper, we propose a generative template-based event extraction method with dynamic prefix (GTEE-DynPref) by integrating context information with type-specific prefixes to learn a context-specific prefix for each context. Experimental results show that our model achieves competitive results with the state-of-the-art classification-based model OneIE on ACE 2005 and achieves the best performances on ERE. Additionally, our model is proven to be portable to new types of events effectively.
翻译:我们用基于模板的有条件生成来考虑事件提取。 虽然将事件提取任务作为具有迅速性的序列生成问题的趋势正在上升,但这些基于生成方法有两大挑战,包括使用亚最佳提示和静态事件类型信息。 在本文中,我们建议采用带有动态前缀(GEEE-DynPref)的基于事件提取变异的模板方法,将背景信息与特定类型前缀相结合,以学习每种背景的特定前缀。 实验结果显示,我们的模式与基于2005年ACE的最先进的分类模型《关于ACE的一一一》取得了竞争性成果,并实现了ERE的最佳表现。 此外,我们的模型被证明能够有效地对新型事件进行移动。