Functional alterations in the relevant neural circuits occur from drug addiction over a certain period. And these significant alterations are also revealed by analyzing fMRI. However, because of fMRI's high dimensionality and poor signal-to-noise ratio, it is challenging to encode efficient and robust brain regional embeddings for both graph-level identification and region-level biomarkers detection tasks between nicotine addiction (NA) and healthy control (HC) groups. In this work, we represent the fMRI of the rat brain as a graph with biological attributes and propose a novel feature-selected graph spatial attention network(FGSAN) to extract the biomarkers of addiction and identify from these brain networks. Specially, a graph spatial attention encoder is employed to capture the features of spatiotemporal brain networks with spatial information. The method simultaneously adopts a Bayesian feature selection strategy to optimize the model and improve classification task by constraining features. Experiments on an addiction-related neural imaging dataset show that the proposed model can obtain superior performance and detect interpretable biomarkers associated with addiction-relevant neural circuits.
翻译:有关神经电路的功能改变是一段时间以来吸毒成瘾造成的。这些重大改变也通过分析FMRI而显现出来。然而,由于FMRI的高度维度和信号到噪音比率低,因此很难为图形级识别和地区级生物标志组之间尼古丁成瘾(NA)和健康控制(HC)之间的区域脑嵌入编码高效和强大的大脑嵌入器。在这项工作中,我们将大鼠大脑的FMRI作为带有生物属性的图表,并提出一个具有新颖特色的图形空间关注网(FGSAN),以提取成瘾生物标记,并从这些脑网络中识别。特别是,使用一个图形空间关注编码器来捕捉具有空间信息的脑脑网络的地貌特征。该方法同时采用一种海湾特征选择战略,以优化模型,并通过限制特征改进分类任务。对与成瘾有关的神经成像数据集的实验表明,拟议的模型可以取得更好的性能,并检测与成瘾相关的神经电路相关的可解释的生物标志。