Here we revisit the classic problem of linear quadratic estimation, i.e. estimating the trajectory of a linear dynamical system from noisy measurements. The celebrated Kalman filter gives an optimal estimator when the measurement noise is Gaussian, but is widely known to break down when one deviates from this assumption, e.g. when the noise is heavy-tailed. Many ad hoc heuristics have been employed in practice for dealing with outliers. In a pioneering work, Schick and Mitter gave provable guarantees when the measurement noise is a known infinitesimal perturbation of a Gaussian and raised the important question of whether one can get similar guarantees for large and unknown perturbations. In this work we give a truly robust filter: we give the first strong provable guarantees for linear quadratic estimation when even a constant fraction of measurements have been adversarially corrupted. This framework can model heavy-tailed and even non-stationary noise processes. Our algorithm robustifies the Kalman filter in the sense that it competes with the optimal algorithm that knows the locations of the corruptions. Our work is in a challenging Bayesian setting where the number of measurements scales with the complexity of what we need to estimate. Moreover, in linear dynamical systems past information decays over time. We develop a suite of new techniques to robustly extract information across different time steps and over varying time scales.
翻译:我们在这里重新审视了线性二次估计的典型问题, 即从噪音测量中估算线性动态系统的轨迹。 著名的卡尔曼过滤器在测量噪音为高山时给出了最佳的估测器, 但众所周知, 当一个人偏离这一假设时会崩溃, 例如噪音是重尾的。 许多临时的超自然估计在实际中用于处理外部线。 在一项开创性工作中, Schick 和 Mitter 给出了可变的保证, 当测量噪音是高山的已知无限微渗透时 。 并提出了这样一个重要问题: 当测量噪音为大型和未知的扰动提供类似的保证时, 我们能否获得类似的保证。 在这项工作中, 我们给出了一个真正强大的过滤器: 我们给线性二次线性二次估测提供了强有力的保证, 即使在恒定的测量器中, 也会有对抗性地损坏。 这个框架可以建模重的、 甚至非静止的噪音过程。 我们的算法使卡尔曼过滤器更加坚固, 它与了解腐败地点的最佳算法相竞争, 并且提出了一个重要问题。 我们的测算系统在不断变的精确度上, 我们的测算系统需要一个动态的精确的尺度, 。