We consider the problem of assigning items to platforms in the presence of group fairness constraints. In the input, each item belongs to certain categories, called classes in this paper. Each platform specifies the group fairness constraints through an upper bound on the number of items it can serve from each class. Additionally, each platform also has an upper bound on the total number of items it can serve. The goal is to assign items to platforms so as to maximize the number of items assigned while satisfying the upper bounds of each class. In some cases, there is a revenue associated with matching an item to a platform, then the goal is to maximize the revenue generated. This problem models several important real-world problems like ad-auctions, scheduling, resource allocations, school choice etc.We also show an interesting connection to computing a generalized maximum independent set on hypergraphs and ranking items under group fairness constraints. We show that if the classes are arbitrary, then the problem is NP-hard and has a strong inapproximability. We consider the problem in both online and offline settings under natural restrictions on the classes. Under these restrictions, the problem continues to remain NP-hard but admits approximation algorithms with small approximation factors. We also implement some of the algorithms. Our experiments show that the algorithms work well in practice both in terms of efficiency and the number of items that get assigned to some platform.
翻译:我们考虑在群体公平性限制下向平台分配项目的问题。 在输入中, 每个项目都属于特定类别, 在本文中被称为类别。 每个平台通过每个类别可提供服务的项目数量上限来指定群体公平性限制。 此外, 每个平台还对其可提供服务的项目总数有上限。 目标是向平台分配项目, 以便在满足每个类别上限的同时最大限度地增加分配给项目的数量。 在有些情况中, 将一个项目与一个平台相匹配会带来收入, 然后目标是最大限度地增加产生的收入。 这个问题模拟了几个重要的现实世界问题, 比如广告拍卖、日程安排、资源分配、学校选择等。 我们还展示了一个有趣的连接, 以在群体公平性限制下, 计算一个普遍、 最高独立的超文本图和排序项目。 我们显示,如果这些类别是任意性的, 那么问题就很硬, 并且非常不合适。 我们考虑到在自然限制下的在线和离线平台设置中存在的问题。 根据这些限制, 问题仍然是一些硬性、 NP- 但却是承认我们所分配的算算法, 在小的算数中, 我们的算算算法中, 也显示我们所指派的算的算的算数。