Parameter identifiability is a structural property of an ODE model for recovering the values of parameters from the data (i.e., from the input and output variables). This property is a prerequisite for meaningful parameter identification in practice. In the presence of nonidentifiability, it is important to find all functions of the parameters that are identifiable. The existing algorithms check whether a given function of parameters is identifiable or, under the solvability condition, find all identifiable functions. Our first main result is an algorithm that computes all identifiable functions without any additional assumptions. Our second main result concerns the identifiability from multiple experiments. For this problem, we show that the set of functions identifiable from multiple experiments is what would actually be computed by input-output equation-based algorithms if the solvability condition is not fulfilled. We give an algorithm that not only finds these functions but also provides an upper bound for the number of experiments to be performed to identify these functions. We provide an implementation of the presented algorithms.
翻译:参数可识别性是从数据(即输入和输出变量)中恢复参数值的 ODE 模型的结构属性。 该属性是实际中有意义参数识别的先决条件。 在存在不可识别性的情况下,必须找到可识别参数的所有功能。 现有的算法检查参数的某一功能是否可以识别, 或者在溶解性条件下找到所有可识别的功能。 我们的第一个主要结果是一个计算所有可识别功能而不附加任何假设的算法。 我们的第二个主要结果涉及多重实验的可识别性。 对于这个问题,我们显示,在多种实验中可识别的功能组是如果不能满足溶解性条件,实际将由输入- 输出方程式算法计算出来的功能组。 我们给出的算法不仅能够找到这些功能,而且还为要完成的这些功能的实验数量提供了上限。 我们提供了演示的算法的落实情况。