The increasing complexity of recent Wi-Fi amendments is making optimal Rate Adaptation (RA) a challenge. The use of classic algorithms or heuristic models to address RA is becoming unfeasible due to the large combination of configuration parameters along with the variability of the wireless channel. Machine Learning-based solutions have been proposed in the state of art, to deal with this complexity. However, they typically use complex models and their implementation in real scenarios is difficult. We propose a simple Deep Reinforcement Learning approach for the automatic RA in Wi-Fi networks, named Data-driven Algorithm for Rate Adaptation (DARA). DARA is standard-compliant. It dynamically adjusts the Wi-Fi Modulation and Coding Scheme (MCS) solely based on the observation of the Signal-to-Noise Ratio (SNR) of the received frames at the transmitter. Our simulation results show that DARA achieves up to 15\% higher throughput when compared with Minstrel High Throughput (HT) and equals the performance of the Ideal Wi-Fi RA algorithm.
翻译:最近对Wi-Fi的修改日益复杂,使得最佳速率适应(RA)成为一项挑战。由于配置参数与无线频道的变异性结合很大,使用经典算法或超常模型来解决RA的问题变得不可行。机器学习解决方案在最新状态中已经提出,以应对这一复杂性。然而,它们通常使用复杂的模型,在现实情况下实施这些模型是困难的。我们建议对Wi-Fi网络的自动RA采用简单的深层强化学习方法,称为数据驱动算法适应率(DARA)。DARA是符合标准的。它仅仅根据对发报机收到的框架的信号到噪音比率(SNR)的观察,动态地调整了Wi-Fi调和编码计划(MCS ) 。我们的模拟结果表明,DRA在与Minstrel高流量(HT)相比达到15 ⁇ 更高的吞吐量,相当于Ideal Wi-Fi RA算法的性。