This paper provides a detailed description of the data collection and machine learning model used in our recent PNAS paper "Flat Teams Drive Scientific Innovation" Xu et al. [2022a]. Here, we discuss how the features of scientific publication can be used to estimate the implicit hierarchy in the corresponding author teams. Besides, we also describe the method of evaluating the impact of team hierarchy on scientific outputs. More details will be updated in this article continuously. Raw data and Readme document can be accessed in this GitHub repository Xu et al. [2022b].
翻译:本文件详细说明了我们最近的PNAS论文“Flat Teams Dread Science Review”Xu等人([2022a])中使用的数据收集和机器学习模式。在这里,我们讨论如何利用科学出版物的特征来估计相应作者团队的隐含等级;此外,我们还介绍了评估团队等级对科学产出的影响的方法。将在这一篇文章中不断更新更多细节。原始数据和Readme文件可在GitHub 仓库 Xu等人([2022b]中查阅。