This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
翻译:本文介绍了基于基因对抗网络潜在空间探索的合成人类肖像生成的渐进方法,目的是产生与特定目标肖像非常相似的不同人类面貌图像。该方法将StyleGAN2用于肖像生成,FaceNet用于面貌相似性评估。进化搜索基于探索StyleGAN2的实际编码潜在空间。合成图像和真实图像的主要结果显示,拟议方法产生了准确和多样的解决方案,这些解决方案代表了现实的人类肖像。拟议研究有助于改善面部识别系统的安全性。