Machine learning models allow us to compare languages by showing how hard a task in each language might be to learn and perform well on. Following this line of investigation, we explore what makes a language "hard to pronounce" by modelling the task of grapheme-to-phoneme (g2p) transliteration. By training a character-level transformer model on this task across 22 languages and measuring the model's proficiency against its grapheme and phoneme inventories, we show that certain characteristics emerge that separate easier and harder languages with respect to learning to pronounce. Namely the complexity of a language's pronunciation from its orthography is due to the expressive or simplicity of its grapheme-to-phoneme mapping. Further discussion illustrates how future studies should consider relative data sparsity per language to design fairer cross-lingual comparison tasks.
翻译:机器学习模式让我们通过展示每种语言的学习和良好表现可能有多难, 来比较语言。 根据这一调查线, 我们探索是什么使得一种语言“ 难以发音 ”, 通过模拟图形化对手机( g2p) 的转写任务。 通过在22种语言中培训一个关于这项任务的品格级变压器模型, 并根据图形化和电话表测量模型的熟练程度, 我们发现, 在学习语音方面, 出现了某些比较容易和较难的语言。 也就是说, 一种语言的发音与其正方言的复杂程度, 是由于其图形化对语音绘图的表达或简单性。 进一步的讨论表明, 未来的研究应该如何考虑每种语言相对的数据宽度, 来设计更公平的跨语言比较任务 。