Machine learning models allow us to compare languages by showing how hard a task in each language might be to learn and perform well on. Following this line of investigation, we explore what makes a language "hard to pronounce" by modelling the task of grapheme-to-phoneme (g2p) transliteration. By training a character-level transformer model on this task across 22 languages and measuring the model's proficiency against its grapheme and phoneme inventories, we show that certain characteristics emerge that separate easier and harder languages with respect to learning to pronounce. Namely the complexity of a language's pronunciation from its orthography is due to the expressive or simplicity of its grapheme-to-phoneme mapping. Further discussion illustrates how future studies should consider relative data sparsity per language to design fairer cross-lingual comparison tasks.


翻译:机器学习模式让我们通过展示每种语言的学习和良好表现可能有多难, 来比较语言。 根据这一调查线, 我们探索是什么使得一种语言“ 难以发音 ”, 通过模拟图形化对手机( g2p) 的转写任务。 通过在22种语言中培训一个关于这项任务的品格级变压器模型, 并根据图形化和电话表测量模型的熟练程度, 我们发现, 在学习语音方面, 出现了某些比较容易和较难的语言。 也就是说, 一种语言的发音与其正方言的复杂程度, 是由于其图形化对语音绘图的表达或简单性。 进一步的讨论表明, 未来的研究应该如何考虑每种语言相对的数据宽度, 来设计更公平的跨语言比较任务 。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员