We show that the fluctuations of the linear eigenvalue statistics of a non-Hermitian random band matrix of increasing bandwidth $b_{n}$ with a continuous variance profile $w_{\nu}(x)$ converges to a $N(0,\sigma_{f}^{2}(\nu))$, where $\nu=\lim_{n\to\infty}(2b_{n}/n)\in [0,1]$ and $f$ is the test function. When $\nu\in (0,1]$, we obtain an explicit formula for $\sigma_{f}^{2}(\nu)$, which depends on $f$, and variance profile $w_{\nu}$. When $\nu=1$, the formula is consistent with Rider and Silverstein (2006) \cite{rider2006gaussian}. We also independently compute an explicit formula for $\sigma_{f}^{2}(0)$ i.e., when the bandwidth $b_{n}$ grows slower compared to $n$. In addition, we show that $\sigma_{f}^{2}(\nu)\to \sigma_{f}^{2}(0)$ as $\nu\downarrow 0$.
翻译:我们显示,一个非希腊随机带宽增加的宽频度($b ⁇ n}美元)的线性电子价值矩阵的波动是测试功能。当美元(x)值(x)值(x)值(x)值(美元)与美元(0,0),(x)值(x)值(x)值(x)值(x))值($(0),(2b ⁇ n)值(x)值(x)值(x)值(x)值(x)值(x))值($(x))值($(x))值($(x))值(x)值($(0,0)值(美元)值(x)值(x)值(x)值(x)值(x)(x)值(x)(x)值(x)(x)值(x)值(x(x)美元(x)(x)值(x(x)值(x)美元(x)值(x)值(x)值(x(x)值(x)值(x)值(x)值(x)值(x)值(x)值(x))值(x(x)值(x)))(x(x(美元))(x)值(x)(x))值(x)。(x)值(美元))))值(x))值(x)值(x)(美元)(美元(x(美元))(x(x(美元)))))(x(x(美元))(x(x(x(x(x(x)))))))(x(x(x(x)))))(x(x(x(x(美元))))))))值(x(美元)值(美元)(x(x(x(x(美元)))(x(x))))))值(美元(x(美元(x(x))))))))(x(x(x))(x(美元)(x)))))(x(x)(x(x(美元(x(美元)))(x(x))))))(x)