The increasingly widespread application of AI models motivates increased demand for explanations from a variety of stakeholders. However, this demand is ambiguous because there are many types of 'explanation' with different evaluative criteria. In the spirit of pluralism, I chart a taxonomy of types of explanation and the associated XAI methods that can address them. When we look to expose the inner mechanisms of AI models, we develop Diagnostic-explanations. When we seek to render model output understandable, we produce Explication-explanations. When we wish to form stable generalizations of our models, we produce Expectation-explanations. Finally, when we want to justify the usage of a model, we produce Role-explanations that situate models within their social context. The motivation for such a pluralistic view stems from a consideration of causes as manipulable relationships and the different types of explanations as identifying the relevant points in AI systems we can intervene upon to affect our desired changes. This paper reduces the ambiguity in use of the word 'explanation' in the field of XAI, allowing practitioners and stakeholders a useful template for avoiding equivocation and evaluating XAI methods and putative explanations.
翻译:然而,这种需求是含糊不清的,因为有许多类型的“解释”与不同的评价标准。本着多元精神,我绘制了解释类型分类表和与之相关的 XAI 方法,以解决这些问题。当我们想暴露AI 模型的内部机制时,我们开发了诊断性解析图。当我们试图使模型输出变得易懂时,我们制作了解释性说明。当我们希望对模型进行稳定的概括时,我们制作了“预期性说明”。最后,当我们想说明使用模型的理由时,我们制作了将模型定位在社会背景下的“作用说明”模型。这种多元观点的动机来自将原因视为可操纵的关系和不同解释,以确定我们可干预的AI 系统中的相关点,以影响我们想要的变化。本文减少了在 XAI 领域使用“解释性”一词的模糊性,允许从业者和利益攸关方使用一个有用的模板,以避免对 XAI 方法和解释的模糊性加以区分和评估。