The increasingly widespread application of AI models motivates increased demand for explanations from a variety of stakeholders. However, this demand is ambiguous because there are many types of 'explanation' with different evaluative criteria. In the spirit of pluralism, I chart a taxonomy of types of explanation and the associated XAI methods that can address them. When we look to expose the inner mechanisms of AI models, we develop Diagnostic-explanations. When we seek to render model output understandable, we produce Explication-explanations. When we wish to form stable generalizations of our models, we produce Expectation-explanations. Finally, when we want to justify the usage of a model, we produce Role-explanations that situate models within their social context. The motivation for such a pluralistic view stems from a consideration of causes as manipulable relationships and the different types of explanations as identifying the relevant points in AI systems we can intervene upon to affect our desired changes. This paper reduces the ambiguity in use of the word 'explanation' in the field of XAI, allowing practitioners and stakeholders a useful template for avoiding equivocation and evaluating XAI methods and putative explanations.


翻译:然而,这种需求是含糊不清的,因为有许多类型的“解释”与不同的评价标准。本着多元精神,我绘制了解释类型分类表和与之相关的 XAI 方法,以解决这些问题。当我们想暴露AI 模型的内部机制时,我们开发了诊断性解析图。当我们试图使模型输出变得易懂时,我们制作了解释性说明。当我们希望对模型进行稳定的概括时,我们制作了“预期性说明”。最后,当我们想说明使用模型的理由时,我们制作了将模型定位在社会背景下的“作用说明”模型。这种多元观点的动机来自将原因视为可操纵的关系和不同解释,以确定我们可干预的AI 系统中的相关点,以影响我们想要的变化。本文减少了在 XAI 领域使用“解释性”一词的模糊性,允许从业者和利益攸关方使用一个有用的模板,以避免对 XAI 方法和解释的模糊性加以区分和评估。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月27日
Arxiv
14+阅读 · 2020年9月1日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员