Path-Guiding algorithms for sampling scattering directions can drastically decrease the variance of Monte Carlo estimators of Light Transport Equation, but their usage was limited to offline rendering because of memory and computational limitations. We introduce a new robust screen-space technique that is based on online learning of parametric mixture models for guiding the real-time path-tracing algorithm. It requires storing of 8 parameters for every pixel, achieves a reduction of FLIP metric up to 4 times with 1 spp rendering. Also, it consumes less than 1.5ms on RTX 2070 for 1080p and reduces path-tracing timings by generating more coherent rays by about 5% on average. Moreover, it leads to significant bias reduction and a lower level of flickering of SVGF output.
翻译:用于取样散射方向的路径引导算法可以大幅降低蒙特卡洛光运输量测算器的差异,但由于内存和计算限制,这些算法的使用仅限于离线投影。我们引入了一种新的稳健的屏幕空间技术,其基础是在线学习参数混合模型,以指导实时路径追踪算法。它要求每个像素储存8个参数,使FLIP测量值减少4倍,1小节成份。此外,它消耗在 RTX 2070 上不到1.5米,1080p 的耗用量也低于 RTX 2070, 并且通过生成更连贯的射线平均约5%来减少路径追踪时间。此外,它导致显著的偏差减少和小点点点点点点点点点,使SVGF输出的亮度降低。