Analytical performance models are very effective in ensuring the quality of service and cost of service deployment remain desirable under different conditions and workloads. While various analytical performance models have been proposed for previous paradigms in cloud computing, serverless computing lacks such models that can provide developers with performance guarantees. Besides, most serverless computing platforms still require developers' input to specify the configuration for their deployment that could affect both the performance and cost of their deployment, without providing them with any direct and immediate feedback. In previous studies, we built such performance models for steady-state and transient analysis of scale-per-request serverless computing platforms (e.g., AWS Lambda, Azure Functions, Google Cloud Functions) that could give developers immediate feedback about the quality of service and cost of their deployments. In this work, we aim to develop analytical performance models for the latest trend in serverless computing platforms that use concurrency value and the rate of requests per second for autoscaling decisions. Examples of such serverless computing platforms are Knative and Google Cloud Run (a managed Knative service by Google). The proposed performance model can help developers and providers predict the performance and cost of deployments with different configurations which could help them tune the configuration toward the best outcome. We validate the applicability and accuracy of the proposed performance model by extensive real-world experimentation on Knative and show that our performance model is able to accurately predict the steady-state characteristics of a given workload with minimal amount of data collection.


翻译:分析性能模型在确保服务质量和服务部署成本方面非常有效,在不同的条件和工作量下仍然十分适宜。虽然已经为先前的云计算模式提出了各种分析性业绩模型,但是,没有服务器的计算却缺乏能够为开发者提供性能保障的模型。此外,大多数没有服务器的计算平台仍需要开发者投入,以具体说明其部署配置配置的配置,这种配置既影响其部署的绩效和成本,又不提供直接和直接的反馈。在以往的研究中,我们为稳定状态和短暂分析无要求的服务器无标准计算平台(如AWS Lambda、Azure函数、谷歌云功能)建立了这样的性能模型,这些平台可以为开发者提供关于服务质量及其部署成本的即时反馈。在这项工作中,我们的目标是为无服务器的计算平台的最新部署趋势制定分析性能模型,这些平台使用调值和每秒要求进行自动评级决定的比率。在以往的研究中,这种无服务器的计算平台的实例是Knational和Googlod Clorow Run (谷管理的一种服务) 的拟议性模型可以帮助开发者和供应商预测部署的绩效和成本,从而验证我们提出的稳定性能度的准确性能状况。我们通过不同的配置来验证其业绩。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员