Authoring an appealing animation for a virtual character is a challenging task. In computer-aided keyframe animation artists define the key poses of a character by manipulating its underlying skeletons. To look plausible, a character pose must respect many ill-defined constraints, and so the resulting realism greatly depends on the animator's skill and knowledge. Animation software provide tools to help in this matter, relying on various algorithms to automatically enforce some of these constraints. The increasing availability of motion capture data has raised interest in data-driven approaches to pose design, with the potential of shifting more of the task of assessing realism from the artist to the computer, and to provide easier access to nonexperts. In this article, we propose such a method, relying on neural networks to automatically learn the constraints from the data. We describe an efficient tool for pose design, allowing na{\"i}ve users to intuitively manipulate a pose to create character animations.
翻译:为虚拟字符撰写一个吸引人的动画片是一项艰巨的任务。 在计算机辅助的键盘动画艺术家通过操纵其骨骼来定义一个字符的关键构成。 要看似可信, 一个字符必须尊重许多定义不清的限制, 因此由此产生的现实主义在很大程度上取决于动画师的技能和知识。 动画软件在这方面提供了帮助的工具, 依靠各种算法自动执行其中的一些限制。 运动捕获数据的不断增多引起了人们对数据驱动方法的注意, 以提出设计, 从而有可能将评估现实主义的任务更多地从艺术家转移到计算机, 并为非专家提供更便捷的准入。 在本篇文章中, 我们提出这样一种方法, 依靠神经网络自动学习数据的限制。 我们描述一个有效的造型设计工具, 允许用户直觉地操纵一个外观来创建字符动画 。