Rare/Weak models for multiple hypothesis testing assume that only a small proportion of the tested hypotheses concern non-null effects and the individual effects are only moderately large, so that they generally do not stand out individually, for example in a Bonferroni analysis. Such rare/weak models have been studied in quite a few settings, for example in some cases studies focused on underlying Gaussian means model for the hypotheses being tested; in some others, Poisson. It seems not to have been noticed before that such seemingly different models have asymptotically the following common structure: Summarizing the evidence each test provides by the negative logarithm of its P-value, previous rare/weak model settings are asymptotically equivalent to detection where most negative log P-values have a standard exponential distribution but a small fraction of the P-values might have an alternative distribution which is moderately larger; we do not know which individual tests those might be, or even if there are any such. Moreover, the alternative distribution is noncentral chisquared on one degree of freedom. We characterize the asymptotic performance of global tests combining these P-values in terms of the chisquared mixture parameters: the scaling parameters controlling heteroscedasticity, the non-centrality parameter describing the effect size whenever it exists, and the parameter controlling the rarity of the non-null effects. Specifically, in a phase space involving the last two parameters, we derive a region where all tests are asymptotically powerless. Outside of this region, the Berk-Jones and the Higher Criticism tests have maximal power. Inference techniques based on the minimal P-value, false-discovery rate controlling, and Fisher's test have sub-optimal asymptotic phase diagrams. We provide various examples for multiple testing problems of the said common structure.


翻译:用于多次假设测试的稀有/微弱模型假定,在测试的假设参数中,只有一小部分与非核效应有关,而个别效应则仅略微大,因此通常不会单独出现,例如在Bonferroni分析中。在相当少数的环境下,对此类稀有/微弱模型进行了研究,例如,在有些情况下,侧重于Gausian 假设测试方法基础模型的研究;在另一些情况下,Poisson。似乎没有注意到,在这种似乎不同的模型具有以下共同结构之前,这种似乎不同的模型似乎没有出现。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月9日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员