This work explores the use of topological tools for achieving effective non-prehensile manipulation in cluttered, constrained workspaces. In particular, it proposes the use of persistent homology as a guiding principle in identifying the appropriate non-prehensile actions, such as pushing, to clean a cluttered space with a robotic arm so as to allow the retrieval of a target object. Persistent homology enables the automatic identification of connected components of blocking objects in the space without the need for manual input or tuning of parameters. The proposed algorithm uses this information to push groups of cylindrical objects together and aims to minimize the number of pushing actions needed to reach to the target. Simulated experiments in a physics engine using a model of the Baxter robot show that the proposed topology-driven solution is achieving significantly higher success rate in solving such constrained problems relatively to state-of-the-art alternatives from the literature. It manages to keep the number of pushing actions low, is computationally efficient and the resulting decisions and motion appear natural for effectively solving such tasks.
翻译:这项工作探索了在封闭的、受限制的工作空间中如何使用地形工具来实现有效的非痛苦操纵,特别是建议使用持久性同质法作为指导原则,以确定适当的非痛苦行动,例如推动用机器人臂清理封闭的空间,以便检索目标物体。持久性同质法使得能够自动识别空间中阻塞物体的连接部件,而不需要人工输入或调整参数。提议的算法利用这一信息将圆柱形物体群推到一起,目的是最大限度地减少达到目标所需的推力行动的数量。使用巴克斯特机器人模型模拟的物理学引擎实验表明,拟议的地形驱动解决办法在解决与文献中最先进的替代方法相比,在解决这种受限制的问题方面取得了显著更高的成功率。它设法使推力行动的数量保持低,计算效率高,由此产生的决定和动作看起来自然,以有效解决这类任务。