We propose two families of nonconforming elements on cubical meshes: one for the $-\text{curl}\Delta\text{curl}$ problem and the other for the Brinkman problem. The element for the $-\text{curl}\Delta\text{curl}$ problem is the first nonconforming element on cubical meshes. The element for the Brinkman problem can yield a uniformly stable finite element method with respect to the parameter $\nu$. The lowest-order elements for the $-\text{curl}\Delta\text{curl}$ and the Brinkman problems have 48 and 30 degrees of freedom, respectively. The two families of elements are subspaces of $H(\text{curl};\Omega)$ and $H(\text{div};\Omega)$, and they, as nonconforming approximation to $H(\text{gradcurl};\Omega)$ and $[H^1(\Omega)]^3$, can form a discrete Stokes complex together with the Lagrange element and the $L^2$ element.
翻译:我们提出了两个非共形元素族在立方网格上的应用:一个用于 $-\text{curl}\Delta\text{curl}$ 问题,另一个用于 Brinkman 问题。用于 $-\text{curl}\Delta\text{curl}$ 问题的元素是立方网格上的第一个非共形元素。用于 Brinkman 问题的元素可针对参数 $\nu$ 带来一个均匀稳定的有限元方法。$-\text{curl}\Delta\text{curl}$ 和 Brinkman 问题的最低阶元素具有 $48$ 和 $30$ 个自由度。这两个元素族是 $H(\text{curl};\Omega)$ 和 $H(\text{div};\Omega)$ 的子空间,作为 $H(\text{gradcurl};\Omega)$ 和 $[H^1(\Omega)]^3$ 的非共形逼近,它们与 Lagrange 元素和 $L^2$ 元素一起形成离散 Stokes 复形。