The energy cost of erasing quantum states depends on our knowledge of the states. We show that learning algorithms can acquire such knowledge to erase many copies of an unknown state at the optimal energy cost. This is proved by showing that learning can be made fully reversible and has no fundamental energy cost itself. With simple counting arguments, we relate the energy cost of erasing quantum states to their complexity, entanglement, and magic. We further show that the constructed erasure protocol is computationally efficient when learning is efficient. Conversely, under standard cryptographic assumptions, we prove that the optimal energy cost cannot be achieved efficiently in general. These results also enable efficient work extraction based on learning. Together, our results establish a concrete connection between quantum learning theory and thermodynamics, highlighting the physical significance of learning processes and enabling provably-efficient learning-based protocols for thermodynamic tasks.


翻译:擦除量子态的能量成本取决于我们对这些态的认知。我们证明,学习算法能够获取此类知识,从而以最优能量成本擦除未知态的多个副本。这通过证明学习过程可以实现完全可逆且本身没有基本能量成本来证实。通过简单的计数论证,我们将擦除量子态的能量成本与其复杂度、纠缠性和魔术性联系起来。我们进一步证明,当学习过程高效时,所构建的擦除协议在计算上是高效的。反之,在标准密码学假设下,我们证明最优能量成本通常无法高效实现。这些结果也使得基于学习的高效功提取成为可能。综合而言,我们的研究在量子学习理论与热力学之间建立了具体联系,揭示了学习过程的物理意义,并为热力学任务提供了可证明高效的学习驱动协议。

0
下载
关闭预览

相关内容

【NeurIPS2025】熵正则化与分布强化学习的收敛定理
专知会员服务
12+阅读 · 2025年10月12日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
专知会员服务
12+阅读 · 2021年6月20日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2025】熵正则化与分布强化学习的收敛定理
专知会员服务
12+阅读 · 2025年10月12日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
专知会员服务
12+阅读 · 2021年6月20日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员