We propose a learning model called the quantum statistical learning QSQ model, which extends the SQ learning model introduced by Kearns to the quantum setting. Our model can be also seen as a restriction of the quantum PAC learning model: here, the learner does not have direct access to quantum examples, but can only obtain estimates of measurement statistics on them. Theoretically, this model provides a simple yet expressive setting to explore the power of quantum examples in machine learning. From a practical perspective, since simpler operations are required, learning algorithms in the QSQ model are more feasible for implementation on near-term quantum devices. We prove a number of results about the QSQ learning model. We first show that parity functions, (log n)-juntas and polynomial-sized DNF formulas are efficiently learnable in the QSQ model, in contrast to the classical setting where these problems are provably hard. This implies that many of the advantages of quantum PAC learning can be realized even in the more restricted quantum SQ learning model. It is well-known that weak statistical query dimension, denoted by WSQDIM(C), characterizes the complexity of learning a concept class C in the classical SQ model. We show that log(WSQDIM(C)) is a lower bound on the complexity of QSQ learning, and furthermore it is tight for certain concept classes C. Additionally, we show that this quantity provides strong lower bounds for the small-bias quantum communication model under product distributions. Finally, we introduce the notion of private quantum PAC learning, in which a quantum PAC learner is required to be differentially private. We show that learnability in the QSQ model implies learnability in the quantum private PAC model. Additionally, we show that in the private PAC learning setting, the classical and quantum sample complexities are equal, up to constant factors.


翻译:我们提出了一个称为量子统计学习 QSQ 模型的学习模式,它将Kearns 引入的SQ 学习模式扩大到量子设置。我们的模型也可以被视为量子 PAC 学习模式的一个限制:在这里,学习者无法直接获取量子实例,但只能获得对量子统计数据的估计。理论上,这个模型提供了一个简单但又显眼的设置,以探索机器学习量子实例的力量。从实际的角度来看,由于需要更简单的操作,在QSQ 模型中学习量子计算算法对于短期量子设备的实施更为可行。我们证明了QSQQ 约束学习模式的一些结果。我们首先显示,等同功能,(log n) QTas 和多数值 DNF 公式在QQQ 模型中可以有效地学习,(log) 在SISQC 中,我们学习了一定的量子QQ, 在SWC 中,我们学到了某种 QQQS 概念, 在SOQ 学习了一种常规的C 。

0
下载
关闭预览

相关内容

一图搞定ML!2020版机器学习技术路线图,35页ppt
专知会员服务
92+阅读 · 2020年7月28日
专知会员服务
112+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月9日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员