With several advantages over conventional RGB cameras, event cameras have provided new opportunities for tackling visual tasks under challenging scenarios with fast motion, high dynamic range, and/or power constraint. Yet unlike image/video compression, the performance of event compression algorithm is far from satisfying and practical. The main challenge for compressing events is the unique event data form, i.e., a stream of asynchronously fired event tuples each encoding the 2D spatial location, timestamp, and polarity (denoting an increase or decrease in brightness). Since events only encode temporal variations, they lack spatial structure which is crucial for compression. To address this problem, we propose a novel event compression algorithm based on a quad tree (QT) segmentation map derived from the adjacent intensity images. The QT informs 2D spatial priority within the 3D space-time volume. In the event encoding step, events are first aggregated over time to form polarity-based event histograms. The histograms are then variably sampled via Poisson Disk Sampling prioritized by the QT based segmentation map. Next, differential encoding and run length encoding are employed for encoding the spatial and polarity information of the sampled events, respectively, followed by Huffman encoding to produce the final encoded events. Our Poisson Disk Sampling based Lossy Event Compression (PDS-LEC) algorithm performs rate-distortion based optimal allocation. On average, our algorithm achieves greater than 6x compression compared to the state of the art.


翻译:与常规 RGB 相机相比, 事件相机比常规的 RGB 相机具有一些优势, 为在具有挑战性的情景下处理视觉任务提供了新的机会。 但是, 与图像/ 视频压缩不同, 事件压缩算法的性能远非满足和实用。 压缩事件的主要挑战在于独特的事件数据形式, 即: 一个不同步的发射事件图例流, 每将 2D 的空间位置、 时间戳和极度编码( 显示亮度的增减 ) 。 由于事件只是将时间变化编码化, 它们缺乏对压缩至关重要的空间结构。 为了解决这个问题, 我们提议了一个基于 QT 的四边树( QT) 分割图的新型事件压缩算法。 压缩事件的主要挑战在于: QT 在 3D 空间时段内, 星际点显示 2D 空间优先度 。 在时间序列中, 事件首先汇总成以极地基事件为基的直线图。 然后通过 Poisson Disk Sampl 优先采集的空间结构结构结构结构结构结构。, 以我们以更高级的平局 的平局 递校正压为基 的校正序为基 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
109+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
109+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Top
微信扫码咨询专知VIP会员