We start a systematic investigation of the size of Craig interpolants, uniform interpolants, and strongest implicates for (quasi-)normal modal logics. Our main upper bound states that for tabular modal logics, the computation of strongest implicates can be reduced in polynomial time to uniform interpolant computation in classical propositional logic. Hence they are of polynomial dag-size iff NP $\subseteq$ P$_{/\text{poly}}$. The reduction also holds for Craig interpolants and uniform interpolants if the tabular modal logic has the Craig interpolation property. Our main lower bound shows an unconditional exponential lower bound on the size of Craig interpolants and strongest implicates covering almost all non-tabular standard normal modal logics. For normal modal logics contained in or containing S4 or GL we obtain the following dichotomy: tabular logics have ``propositionally sized'' interpolants while for non-tabular logics an unconditional exponential lower bound holds.
翻译:暂无翻译