A central part of geometric statistics is to compute the Fr\'echet mean. This is a well-known intrinsic mean on a Riemannian manifold that minimizes the sum of squared Riemannian distances from the mean point to all other data points. The Fr\'echet mean is simple to define and generalizes the Euclidean mean, but for most manifolds even minimizing the Riemannian distance involves solving an optimization problem. Therefore, numerical computations of the Fr\'echet mean require solving an embedded optimization problem in each iteration. We introduce the GEORCE-FM algorithm to simultaneously compute the Fr\'echet mean and Riemannian distances in each iteration in a local chart, making it faster than previous methods. We extend the algorithm to Finsler manifolds and introduce an adaptive extension such that GEORCE-FM scales to a large number of data points. Theoretically, we show that GEORCE-FM has global convergence and local quadratic convergence and prove that the adaptive extension converges in expectation to the Fr\'echet mean. We further empirically demonstrate that GEORCE-FM outperforms existing baseline methods to estimate the Fr\'echet mean in terms of both accuracy and runtime.


翻译:几何统计的核心任务之一是计算弗雷歇均值。这是在黎曼流形上定义的一种经典内蕴均值,它通过最小化从均值点到所有其他数据点的黎曼距离平方和来求解。弗雷歇均值的定义简洁,且推广了欧几里得均值,但对于大多数流形而言,即使最小化黎曼距离本身也涉及一个优化问题。因此,弗雷歇均值的数值计算需要在每次迭代中求解一个嵌套的优化问题。本文提出了GEORCE-FM算法,该算法能够在局部坐标图中同步计算弗雷歇均值与黎曼距离,从而使其计算速度优于现有方法。我们将该算法推广至芬斯勒流形,并引入一种自适应扩展,使得GEORCE-FM能够适用于大规模数据点集。在理论上,我们证明了GEORCE-FM具有全局收敛性与局部二次收敛性,并证明了其自适应扩展在期望意义下收敛至弗雷歇均值。进一步,我们通过实验验证了GEORCE-FM在估计弗雷歇均值时,在精度与运行时间上均优于现有的基准方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员