In this paper we present the first safe system for full control of self-driving vehicles trained from human demonstrations and deployed in challenging, real-world, urban environments. Current industry-standard solutions use rule-based systems for planning. Although they perform reasonably well in common scenarios, the engineering complexity renders this approach incompatible with human-level performance. On the other hand, the performance of machine-learned (ML) planning solutions can be improved by simply adding more exemplar data. However, ML methods cannot offer safety guarantees and sometimes behave unpredictably. To combat this, our approach uses a simple yet effective rule-based fallback layer that performs sanity checks on an ML planner's decisions (e.g. avoiding collision, assuring physical feasibility). This allows us to leverage ML to handle complex situations while still assuring the safety, reducing ML planner-only collisions by 95%. We train our ML planner on 300 hours of expert driving demonstrations using imitation learning and deploy it along with the fallback layer in downtown San Francisco, where it takes complete control of a real vehicle and navigates a wide variety of challenging urban driving scenarios.
翻译:在本文中,我们展示了第一个安全系统,全面控制从人类示威中训练的、在具有挑战性、现实世界和城市环境中部署的自驾驶车辆。目前的工业标准解决方案使用基于规则的规划系统。虽然在共同的情景下,工程的复杂性使这种方法表现得相当好,但这种方法与人类层面的性能不相适应。另一方面,机器学习(ML)规划解决方案的性能可以通过仅仅增加更多的实例数据来改进。然而,ML方法不能提供安全保障,有时也难以预知地行事。为了解决这一问题,我们的方法使用了简单而有效的基于规则的后背层,对ML规划者的决定进行理智检查(例如避免碰撞,确保实际可行性)。这使我们能够利用ML处理复杂的情况,同时保证安全,将ML只与ML相撞的碰撞减少95%。我们ML规划员在300小时的专家驾驶演示上进行了培训,使用模仿学习,并在旧金山市中心与下层一起进行专家驾驶演示,在那里完全控制一辆真正的车辆,并浏览各种具有挑战性的城市驾驶情景。