We present PROPS, a lightweight transfer learning mechanism for sequential data. PROPS learns probabilistic perturbations around the predictions of one or more arbitrarily complex, pre-trained black box models (such as recurrent neural networks). The technique pins the black-box prediction functions to "source nodes" of a hidden Markov model (HMM), and uses the remaining nodes as "perturbation nodes" for learning customized perturbations around those predictions. In this paper, we describe the PROPS model, provide an algorithm for online learning of its parameters, and demonstrate the consistency of this estimation. We also explore the utility of PROPS in the context of personalized language modeling. In particular, we construct a baseline language model by training a LSTM on the entire Wikipedia corpus of 2.5 million articles (around 6.6 billion words), and then use PROPS to provide lightweight customization into a personalized language model of President Donald J. Trump's tweeting. We achieved good customization after only 2,000 additional words, and find that the PROPS model, being fully probabilistic, provides insight into when President Trump's speech departs from generic patterns in the Wikipedia corpus. Python code (for both the PROPS training algorithm as well as experiment reproducibility) is available at https://github.com/cylance/perturbed-sequence-model.


翻译:我们提出PROPPS,这是一个用于连续数据的轻量级传输学习机制;PROPS在预测一个或多个任意复杂、事先训练的黑盒模型(例如经常性神经网络)时,会了解概率性扰动。技术将黑盒预测功能钉在隐藏的Markov模型(HMM)的“源节点”上,然后用其余节点作为“扰动节点”,学习这些预测的定制扰动。在本文中,我们描述PROPS模型,为在线学习其参数提供算法,并展示这一估计的一致性。我们还探讨PROPS在个人化语言模型中是否有用。特别是,我们通过在整个维基百科堆中培训一个LSTM(约6.6亿字),将黑盒预测功能锁定为“源节点”,然后使用PROPS为Donald J. Trump's的个性化语言模型提供轻量量的定制。我们只用了2,000字后就实现了良好的定制,发现PROPS模型是完全可靠的,在个人化语言模型中提供了深入的视野,当Trampbus/rampbisal 正在将PRApreabes 用于PRAmbreal 的版本的版本,作为Bisals 和Mismalmalmalbismalbisalbismex

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员