Existing software-based energy measurements of NLP models are not accurate because they do not consider the complex interactions between energy consumption and model execution. We present IrEne, an interpretable and extensible energy prediction system that accurately predicts the inference energy consumption of a wide range of Transformer-based NLP models. IrEne constructs a model tree graph that breaks down the NLP model into modules that are further broken down into low-level machine learning (ML) primitives. IrEne predicts the inference energy consumption of the ML primitives as a function of generalizable features and fine-grained runtime resource usage. IrEne then aggregates these low-level predictions recursively to predict the energy of each module and finally of the entire model. Experiments across multiple Transformer models show IrEne predicts inference energy consumption of transformer models with an error of under 7% compared to the ground truth. In contrast, existing energy models see an error of over 50%. We also show how IrEne can be used to conduct energy bottleneck analysis and to easily evaluate the energy impact of different architectural choices. We release the code and data at https://github.com/StonyBrookNLP/irene.


翻译:现有NLP模型的基于软件的能源测量不准确,因为它们没有考虑到能源消耗和模型执行之间的复杂互动。 我们介绍了IrEne, 这是一种可解释和可扩展的能源预测系统,准确预测以变异器为基础的各种NLP模型的推断能源消耗。 IrEne 构建了一个示范树图,将NLP模型细分为进一步细分为低层次机器学习原始(ML)的模块。 IrEne 预测ML原始的推断能源消耗是通用特性和精细精细操作时间资源使用的一种函数。 IrEne 然后将这些低水平的预测汇总起来,以预测每个模块和整个模型的能量。 多个变异模型的实验显示, IrEne 预测变异器模型的能量消耗将进一步细分为低层次机器学习(ML)原始模型。 相比之下, 现有的能源模型则显示50%以上的误差。 我们还表明, IrEne 如何使用IrEne 来进行能源瓶式/NEBER 分析, 并轻松 数据 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
208+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Arxiv
3+阅读 · 2020年11月28日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
208+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员