Group-based social dominance hierarchies are of essential interest in animal behavior research. Studies often record aggressive interactions observed over time, and models that can capture such dynamic hierarchy are therefore crucial. Traditional ranking methods summarize interactions across time, using only aggregate counts. Instead, we take advantage of the interaction timestamps, proposing a series of network point process models with latent ranks. We carefully design these models to incorporate important characteristics of animal interaction data, including the winner effect, bursting and pair-flip phenomena. Through iteratively constructing and evaluating these models we arrive at the final cohort Markov-Modulated Hawkes process (C-MMHP), which best characterizes all aforementioned patterns observed in interaction data. We compare all models using simulated and real data. Using statistically developed diagnostic perspectives, we demonstrate that the C-MMHP model outperforms other methods, capturing relevant latent ranking structures that lead to meaningful predictions for real data.
翻译:以群体为基础的社会主导等级制度对于动物行为研究至关重要。 研究往往记录长期观察到的激烈互动,因此,能够捕捉这种动态等级的模型至关重要。 传统的排名方法只使用总算来总结不同时间的相互作用。 相反,我们利用互动时间戳,提出一系列具有潜在等级的网络点进程模型。 我们仔细设计这些模型,以纳入动物互动数据的重要特征,包括赢家效应、爆破和双滑现象。 通过迭代构建和评估这些模型,我们到达了最终组群Markov-MMHP(C-MMHP)流程,该流程最能描述在互动数据中观察到的所有上述模式。 我们用模拟数据和真实数据对所有模型进行比较。 我们从统计学上开发的诊断角度,证明C-MHP模型超越了其他方法,捕捉到相关的潜在排序结构,从而导致对真实数据进行有意义的预测。