Group-based social dominance hierarchies are of essential interest in animal behavior research. Studies often record aggressive interactions observed over time, and models that can capture such dynamic hierarchy are therefore crucial. Traditional ranking methods summarize interactions across time, using only aggregate counts. Instead, we take advantage of the interaction timestamps, proposing a series of network point process models with latent ranks. We carefully design these models to incorporate important characteristics of animal interaction data, including the winner effect, bursting and pair-flip phenomena. Through iteratively constructing and evaluating these models we arrive at the final cohort Markov-Modulated Hawkes process (C-MMHP), which best characterizes all aforementioned patterns observed in interaction data. We compare all models using simulated and real data. Using statistically developed diagnostic perspectives, we demonstrate that the C-MMHP model outperforms other methods, capturing relevant latent ranking structures that lead to meaningful predictions for real data.


翻译:以群体为基础的社会主导等级制度对于动物行为研究至关重要。 研究往往记录长期观察到的激烈互动,因此,能够捕捉这种动态等级的模型至关重要。 传统的排名方法只使用总算来总结不同时间的相互作用。 相反,我们利用互动时间戳,提出一系列具有潜在等级的网络点进程模型。 我们仔细设计这些模型,以纳入动物互动数据的重要特征,包括赢家效应、爆破和双滑现象。 通过迭代构建和评估这些模型,我们到达了最终组群Markov-MMHP(C-MMHP)流程,该流程最能描述在互动数据中观察到的所有上述模式。 我们用模拟数据和真实数据对所有模型进行比较。 我们从统计学上开发的诊断角度,证明C-MHP模型超越了其他方法,捕捉到相关的潜在排序结构,从而导致对真实数据进行有意义的预测。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
24+阅读 · 2020年9月25日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
24+阅读 · 2020年9月25日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员