We propose Echo State Networks (ESNs) to predict the statistics of extreme events in a turbulent flow. We train the ESNs on small datasets that lack information about the extreme events. We asses whether the networks are able to extrapolate from the small imperfect datasets and predict the heavy-tail statistics that describe the events. We find that the networks correctly predict the events and improve the statistics of the system with respect to the training data in almost all cases analysed. This opens up new possibilities for the statistical prediction of extreme events in turbulence.
翻译:我们建议回声国家网络(ESNs)预测动荡中极端事件的统计数字,我们用缺乏极端事件信息的小型数据集对ESNs进行培训,我们评估这些网络是否能够从小型不完善的数据集中推断出来,预测描述这些事件的繁琐统计数据,我们发现这些网络正确地预测了事件,并改进了该系统在几乎所有分析案例的培训数据方面的统计数据,这为对动荡中的极端事件进行统计预测开辟了新的可能性。