Processing of medical images such as MRI or CT presents unique challenges compared to RGB images typically used in computer vision. These include a lack of labels for large datasets, high computational costs, and metadata to describe the physical properties of voxels. Data augmentation is used to artificially increase the size of the training datasets. Training with image patches decreases the need for computational power. Spatial metadata needs to be carefully taken into account in order to ensure a correct alignment of volumes. We present TorchIO, an open-source Python library to enable efficient loading, preprocessing, augmentation and patch-based sampling of medical images for deep learning. TorchIO follows the style of PyTorch and integrates standard medical image processing libraries to efficiently process images during training of neural networks. TorchIO transforms can be composed, reproduced, traced and extended. We provide multiple generic preprocessing and augmentation operations as well as simulation of MRI-specific artifacts. Source code, comprehensive tutorials and extensive documentation for TorchIO can be found at https://torchio.rtfd.io/. The package can be installed from the Python Package Index running 'pip install torchio'. It includes a command-line interface which allows users to apply transforms to image files without using Python. Additionally, we provide a graphical interface within a TorchIO extension in 3D Slicer to visualize the effects of transforms. TorchIO was developed to help researchers standardize medical image processing pipelines and allow them to focus on the deep learning experiments. It encourages open science, as it supports reproducibility and is version controlled so that the software can be cited precisely. Due to its modularity, the library is compatible with other frameworks for deep learning with medical images.


翻译:MRI 或CT 等医疗图像的处理与通常用于计算机视觉的 RGB 图像相比,提出了独特的挑战,其中包括缺少大数据集标签、高计算成本和描述 voxel 物理特性的元数据。数据增强用于人为地增加培训数据集的大小。图像补丁培训减少了计算能力的需求。需要谨慎考虑空间元数据,以确保对数量进行正确校正。我们提供了托尔奇IO,一个开放源代码 Python 库,以高效地装载、预处理、扩增和基于补基的医学图像取样,供深层学习。托尔奇组织遵循了PyTochrch的风格,并整合了标准的医疗图像处理库,以便在培训神经网络期间高效地处理图像。托尔奇组织可以组成、复制、追踪和扩展多个通用预处理前处理和增强操作,以及模拟MRIC-具体工艺品。源代码、全面的教程和托尔奇O的开源界面可以在 https://tochio.revd.io/trentIO 上找到高效的图像取样样本取样, 软件可以将Spreal reliflifliflip 安装到服务器到服务器。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Python图像处理,366页pdf,Image Operators Image Processing in Python
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Keras实现基于MSCNN的人群计数
AI科技评论
8+阅读 · 2019年2月11日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
实战 | 用Python做图像处理(一)
七月在线实验室
25+阅读 · 2018年5月23日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员