In this study, we validate the findings of previously published papers, showing the feasibility of an Electroencephalography (EEG) based gaze estimation. Moreover, we extend previous research by demonstrating that with only a slight drop in model performance, we can significantly reduce the number of electrodes, indicating that a high-density, expensive EEG cap is not necessary for the purposes of EEG-based eye tracking. Using data-driven approaches, we establish which electrode clusters impact gaze estimation and how the different types of EEG data preprocessing affect the models' performance. Finally, we also inspect which recorded frequencies are most important for the defined tasks.
翻译:在这项研究中,我们验证了以前发表的论文的研究结果,显示了以视觉估计为基础的电脑摄影(EEG)的可行性。此外,我们扩展了以前的研究,通过证明模型性能稍有下降,我们就能大大减少电极的数量,表明不需要高密度、昂贵的EEG上限来进行基于EEG的眼睛跟踪。我们采用数据驱动方法,确定哪些电极集群会影响视觉估计,不同种类的EEG数据预处理会如何影响模型的性能。最后,我们还检查所记录的频率对于确定的任务最为重要的频率。</s>