As data from monitored structures become increasingly available, the demand grows for it to be used efficiently to add value to structural operation and management. One way in which this can be achieved is to use structural response measurements to assess the usefulness of models employed to describe deterioration processes acting on a structure, as well the mechanical behavior of the latter. This is what this work aims to achieve by first, framing Structural Health Monitoring as a Bayesian model updating problem, in which the quantities of inferential interest characterize the deterioration process and/or structural state. Then, using the posterior estimates of these quantities, a decision-theoretic definition is proposed to assess the structural and/or deterioration models based on (a) their ability to explain the data and (b) their performance on downstream decision support-based tasks. The proposed framework is demonstrated on strain response data obtained from a test specimen which was subjected to three-point bending while simultaneously exposed to accelerated corrosion leading to thickness loss. Results indicate that the level of \textit{a priori} domain knowledge on the deterioration form is critical.
翻译:暂无翻译