Matrix factorization (MF) is a common method for collaborative filtering. MF represents user preferences and item attributes by latent factors. Despite that MF is a powerful method, it suffers from not be able to identifying strong associations of closely related items. In this work, we propose a method for matrix factorization that can reflect the localized relationships between strong related items into the latent representations of items. We do it by combine two worlds: MF for collaborative filtering and item2vec for item-embedding. The proposed method is able to exploit item-item relations. Our experiments on several datasets demonstrates a better performance with the previous work.
翻译:矩阵因子化(MF)是合作过滤的一种常见方法。MF代表用户偏好和潜在因素的物品属性。尽管MF是一种强有力的方法,但它无法确定密切相关的物品的牢固关联性。在这项工作中,我们提出一个矩阵因子化方法,能够反映强相关物品之间的局部关系,将其纳入项目的潜在表述中。我们这样做的方法是结合两个世界:合作过滤MF和项目编组的物品2vec。提议的方法能够利用项目-物品关系。我们在几个数据集上进行的实验显示,与以前的工作相比,我们的工作表现更好。