Matrix factorization (MF) is a common method for collaborative filtering. MF represents user preferences and item attributes by latent factors. Despite that MF is a powerful method, it suffers from not be able to identifying strong associations of closely related items. In this work, we propose a method for matrix factorization that can reflect the localized relationships between strong related items into the latent representations of items. We do it by combine two worlds: MF for collaborative filtering and item2vec for item-embedding. The proposed method is able to exploit item-item relations. Our experiments on several datasets demonstrates a better performance with the previous work.


翻译:矩阵因子化(MF)是合作过滤的一种常见方法。MF代表用户偏好和潜在因素的物品属性。尽管MF是一种强有力的方法,但它无法确定密切相关的物品的牢固关联性。在这项工作中,我们提出一个矩阵因子化方法,能够反映强相关物品之间的局部关系,将其纳入项目的潜在表述中。我们这样做的方法是结合两个世界:合作过滤MF和项目编组的物品2vec。提议的方法能够利用项目-物品关系。我们在几个数据集上进行的实验显示,与以前的工作相比,我们的工作表现更好。

0
下载
关闭预览

相关内容

协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社群的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。
【WWW2021】场矩阵分解机推荐系统
专知会员服务
32+阅读 · 2021年2月27日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
【WWW2021】场矩阵分解机推荐系统
专知会员服务
32+阅读 · 2021年2月27日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员