Machine learning classifiers are vulnerable to adversarial examples -- input-specific perturbations that manipulate models' output. Universal Adversarial Perturbations (UAPs), which identify noisy patterns that generalize across the input space, allow the attacker to greatly scale up the generation of such examples. Although UAPs have been explored in application domains beyond computer vision, little is known about their properties and implications in the specific context of realizable attacks, such as malware, where attackers must satisfy challenging problem-space constraints. In this paper we explore the challenges and strengths of UAPs in the context of malware classification. We generate sequences of problem-space transformations that induce UAPs in the corresponding feature-space embedding and evaluate their effectiveness across different malware domains. Additionally, we propose adversarial training-based mitigations using knowledge derived from the problem-space transformations, and compare against alternative feature-space defenses. Our experiments limit the effectiveness of a white box Android evasion attack to ~20% at the cost of ~3% TPR at 1% FPR. We additionally show how our method can be adapted to more restrictive domains such as Windows malware. We observe that while adversarial training in the feature space must deal with large and often unconstrained regions, UAPs in the problem space identify specific vulnerabilities that allow us to harden a classifier more effectively, shifting the challenges and associated cost of identifying new universal adversarial transformations back to the attacker.
翻译:机器学习分类很容易受到对抗性例子的影响 -- -- 以输入为特有的扰动来操纵模型输出输出。 通用反反反扰动( UAPs), 找出在输入空间中普遍推广的噪音模式, 使攻击者能够大大扩大这类实例的生成。 虽然在计算机视野以外的应用领域探索了UAPs, 但是在可实现攻击的具体背景下,例如恶意软件,攻击者必须满足挑战问题空间限制的挑战性冲击。 在本文中,我们探讨在恶意软件分类方面UAPs的挑战和优势。 我们生成了问题-空间变化的顺序,促使UAPs在相应的功能空间嵌入中产生反响,并评价其在不同的恶意软件领域的效力。 此外,我们提议利用从问题-空间变化中获得的知识来进行对抗性培训,并与替代性空间防御系统防御系统作比较。 我们的实验将白箱和机器人规避攻击的效果限制在~20%, 其成本为~3% TRPr 。 我们进一步表明, 我们的方法可以有效地调整到更具限制性的系统, 也就是, 在大规模空间- 软体软件交易中, 我们必须用更具的硬的系统化的系统化的系统操作, 。