Traditional linear control strategies have been extensively researched and utilized in many robotic and industrial applications and yet they dont respond to total dynamics of the systems To avoid tedious calculations for nonlinear control schemes like H infinity control and Predictive Control application of Reinforcement Learning can provide alternative solutions This article presents the implementation of RL control with Deep Deterministic Policy Gradient and Proximal Policy Optimization on a mobile selfbalancing Extendible Wheeled Inverted Pendulum EWIP system Such RL models make the task of finding satisfactory control scheme easier and respond to the dynamics effectively while self-tuning the parameters to provide better control In this article two RLbased controllers are pitted against an MPC controller to evaluate the performance on the basis of state variables of the EWIP system while following a specific desired trajectory
翻译:传统线性控制战略在许多机器人和工业应用中得到了广泛研究和利用,然而,这些传统线性控制战略对系统的整体动态没有作出反应。 避免对非线性控制计划,如H无限控制和加强学习的可预测性控制应用等非线性控制计划进行冗长的计算,可提供替代解决办法。 本条介绍在移动自平衡的可延长的双向轮反倒转的EWIP系统上采用深确定性政策分级和优化政策优化的RL控制,这种RL模式使找到令人满意的控制计划更容易,对动态作出有效反应,同时对参数进行自我调整,以提供更好的控制。