In this paper, we consider a status update system, in which update packets are sent to the destination via a wireless medium that allows for multiple rates, where a higher rate also naturally corresponds to a higher error probability. The data freshness is measured using age of information, which is defined as the age of the recent update at the destination. A packet that is transmitted with a higher rate, will encounter a shorter delay and a higher error probability. Thus, the choice of the transmission rate affects the age at the destination. In this paper, we design a low-complexity scheduler that selects between two different transmission rate and error probability pairs to be used at each transmission epoch. This problem can be cast as a Markov Decision Process. We show that there exists a threshold-type policy that is age-optimal. More importantly, we show that the objective function is quasi-convex or non-decreasing in the threshold, based on to the system parameters values. This enables us to devise a \emph{low-complexity algorithm} to minimize the age. These results reveal an interesting phenomenon: While choosing the rate with minimum mean delay is delay-optimal, this does not necessarily minimize the age.
翻译:在本文中, 我们考虑一个状态更新系统, 更新的包会通过无线介质发送到目的地, 允许多发率, 高发率自然也与更高的误差概率相对应。 数据更新度是使用信息年龄来测量的, 信息年龄被定义为目的地最近更新的年龄。 以更高速率传输的包会遇到更短的延迟和更高的误差概率。 因此, 传输率的选择会影响目的地的年龄 。 在本文中, 我们设计一个低兼容性调度器, 选择两种不同的传输率和误差概率配对, 以便在每个传输区使用。 这个问题可以被投递成一个 Markov 决策程序 。 我们显示存在一个年龄最优的阈值类型政策 。 更重要的是, 我们显示目标函数在门槛中是准的 convex 或非递减值, 以系统参数值为基础 。 这使我们能够设计一个 emph{ low- complexlicity 算法来最小化年龄 。 这些结果揭示了一个有趣的现象: 虽然选择最小的延迟率是最小的最小的延迟年龄。