Autonomous navigation is essential for steel bridge inspection robot to monitor and maintain the working condition of steel bridges. Majority of existing robotic solutions requires human support to navigate the robot doing the inspection. In this paper, a navigation framework is proposed for ARA robot [1], [2] to run on mobile mode. In this mode, the robot needs to cross and inspect all the available steel bars. The most significant contributions of this research are four algorithms, which can process the depth data, segment it into clusters, estimate the boundaries, construct a graph to represent the structure, generate a shortest inspection path with any starting and ending points, and determine available robot configuration for path planning. Experiments on steel bridge structures setup highlight the effective performance of the algorithms, and the potential to apply to the ARA robot to run on real bridge structures. We released our source code in Github for the research community to use.
翻译:自动导航对于钢桥检查机器人监测和保持钢桥的工作条件至关重要。大多数现有机器人解决方案都需要人手支持才能导航进行检查的机器人。在本文中,为ARA机器人提议了一个导航框架[1],[2]以移动模式运行。在这种模式中,机器人需要交叉和检查所有可用的钢条。这一研究的最重要贡献是四种算法,它们可以处理深度数据,将其分成几组,估计边界,绘制一个显示结构的图表,创造带有任何起始点和终点的最短检查路径,并确定路径规划的现有机器人配置。在钢桥结构上进行的实验突出显示了算法的有效运作,以及应用ARA机器人在真正的桥梁结构上运行的潜力。我们在Github发布了我们的源代码,供研究界使用。