Traffic analysis is crucial for urban operations and planning, while the availability of dense urban traffic data beyond loop detectors is still scarce. We present a large-scale floating vehicle dataset of per-street segment traffic information, Metropolitan Segment Traffic Speeds from Massive Floating Car Data in 10 Cities (MeTS-10), available for 10 global cities with a 15-minute resolution for collection periods ranging between 108 and 361 days in 2019-2021 and covering more than 1500 square kilometers per metropolitan area. MeTS-10 features traffic speed information at all street levels from main arterials to local streets for Antwerp, Bangkok, Barcelona, Berlin, Chicago, Istanbul, London, Madrid, Melbourne and Moscow. The dataset leverages the industrial-scale floating vehicle Traffic4cast data with speeds and vehicle counts provided in a privacy-preserving spatio-temporal aggregation. We detail the efficient matching approach mapping the data to the OpenStreetMap road graph. We evaluate the dataset by comparing it with publicly available stationary vehicle detector data (for Berlin, London, and Madrid) and the Uber traffic speed dataset (for Barcelona, Berlin, and London). The comparison highlights the differences across datasets in spatio-temporal coverage and variations in the reported traffic caused by the binning method. MeTS-10 enables novel, city-wide analysis of mobility and traffic patterns for ten major world cities, overcoming current limitations of spatially sparse vehicle detector data. The large spatial and temporal coverage offers an opportunity for joining the MeTS-10 with other datasets, such as traffic surveys in traffic planning studies or vehicle detector data in traffic control settings.
翻译:摘要:交通分析对于城市运营和规划至关重要,而除了环路传感器外,稠密的城市交通数据仍然很少。我们提供了一个大规模的漂流车辆数据集,包括10个全球城市的道路段交通信息 MeTS(Metropolitan Segment Traffic Speeds from Massive Floating Car Data)-10,以15分钟的精度为收集期间,覆盖2019-2021年之间的108至361天,并涵盖每个都市区1500多平方公里的面积。 MeTS-10 提供了来自 Antwerp、Bangkok、Barcelona、Berlin、Chicago、Istanbul、London、Madrid、Melbourne 和 Moscow 的所有街道级别的交通速度信息,从主干道到当地街道。该数据集利用了工业规模的浮动车数据 Traffic4cast,并提供隐私保护的时空聚合的速度和车辆计数。我们详细介绍了有效的匹配方法,将数据映射到 OpenStreetMap 的道路图中。我们通过与公开可用的静态车辆检测器数据(针对柏林、伦敦和马德里)和优步交通速度数据(针对巴塞罗那、柏林和伦敦)进行比较,评估了数据集。比较突出了数据集在时空覆盖和因分箱方法导致的报告交通变化方面的差异。 MeTS-10 可以为十个主要世界城市的新型城市范围的移动性和交通模式分析提供可能,克服当前空间稀疏的车辆检测器数据的局限性。大空间和时间覆盖范围为将 MeTS-10 与其他数据集(例如交通规划研究中的交通调查或交通控制设置中的车辆检测器数据等)相结合提供了机会。