This paper deals with the maximum independent set (M.I.S.) problem, also known as the stable set problem. The \it{basic} mathematical programming model that captures this problem is an Integer Program (I.P.) with zero-one variables and only the \it{edge inequalities}. We present an enhanced I.P. by adding a polynomial number of linear constraints, known as \it{valid inequalities}; this new model is still polynomial in the number of vertices in the graph. We carried out computational testing of the Linear Relaxation of the new I.P. ~We tested about 5000 instances of randomly generated (and connected) graphs with up to 40 vertices. In each of these instances, the Linear Relaxation returned an optimal solution with (i) every variable having an integer value, and (ii) the optimal solution value of the Linear Relaxation was the same as that of the original (\it{basic}) I.P.
翻译:本文处理最大的独立设置问题( M. I. S. ), 也称为稳定设置问题 。 记录这一问题的数学编程模型是一个零一变量的整数程序( I. P. ), 只有一个零一变量, 只有\ it{ 边缘不平等 } 。 我们展示了一个强化的I. P., 方法是增加一个多线性限制的多数值, 称为\ it{ valid 不平等 } ; 这个新模型仍然是图中顶点数的多元值。 我们对新 I. P. ~ 我们测试了大约5000个随机生成的(和连接的)图案, 最多有40个。 在每种情况下, 线性放松都返回了一个最佳的解决方案, (i) 每个具有整数值的变量, (ii) 线性放松的最佳解决方案值与原始的(\it{ 基本 } I. P. 相同 。