Many single-target regression problems require estimates of uncertainty along with the point predictions. Probabilistic regression algorithms are well-suited for these tasks. However, the options are much more limited when the prediction target is multivariate and a joint measure of uncertainty is required. For example, in predicting a 2D velocity vector a joint uncertainty would quantify the probability of any vector in the plane, which would be more expressive than two separate uncertainties on the x- and y- components. To enable joint probabilistic regression, we propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution. Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches. We demonstrate these claims in simulation and with a case study predicting two-dimensional oceanographic velocity data. An implementation of our method is available at https://github.com/stanfordmlgroup/ngboost.


翻译:许多单目标回归问题需要与点预测一起估计不确定性。 概率回归算法非常适合这些任务。 但是, 当预测目标为多变和需要共同度量不确定性时, 选项的局限性要大得多。 例如, 在预测2D速度矢量时, 联合不确定性将量化平面中任何矢量的概率, 其表达性大于x和y- 组件两个不同的不确定性。 为了能够实现联合概率回归, 我们提议了一种自然梯度回归算法( NGBoost) 方法, 其基础是非对称地建模多变预测分布的有条件参数。 我们的方法是稳健的, 在不进行广泛调整的情况下在框外工作, 在假设目标分布方面是模块化的, 并且比现有方法具有竞争力。 我们用模拟和预测二维海洋速度数据的案例研究来证明这些主张。 我们在https://github.com/stanfarmlgroup/ngbowst。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:Facebook 推荐算法 DLRM,阿里巴巴 Exact-k 推荐
LibRec智能推荐
3+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
LibRec 精选:Facebook 推荐算法 DLRM,阿里巴巴 Exact-k 推荐
LibRec智能推荐
3+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员