Many single-target regression problems require estimates of uncertainty along with the point predictions. Probabilistic regression algorithms are well-suited for these tasks. However, the options are much more limited when the prediction target is multivariate and a joint measure of uncertainty is required. For example, in predicting a 2D velocity vector a joint uncertainty would quantify the probability of any vector in the plane, which would be more expressive than two separate uncertainties on the x- and y- components. To enable joint probabilistic regression, we propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution. Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches. We demonstrate these claims in simulation and with a case study predicting two-dimensional oceanographic velocity data. An implementation of our method is available at https://github.com/stanfordmlgroup/ngboost.
翻译:许多单目标回归问题需要与点预测一起估计不确定性。 概率回归算法非常适合这些任务。 但是, 当预测目标为多变和需要共同度量不确定性时, 选项的局限性要大得多。 例如, 在预测2D速度矢量时, 联合不确定性将量化平面中任何矢量的概率, 其表达性大于x和y- 组件两个不同的不确定性。 为了能够实现联合概率回归, 我们提议了一种自然梯度回归算法( NGBoost) 方法, 其基础是非对称地建模多变预测分布的有条件参数。 我们的方法是稳健的, 在不进行广泛调整的情况下在框外工作, 在假设目标分布方面是模块化的, 并且比现有方法具有竞争力。 我们用模拟和预测二维海洋速度数据的案例研究来证明这些主张。 我们在https://github.com/stanfarmlgroup/ngbowst。