A matrix $A$ is totally positive (or non-negative) of order $k$, denoted $TP_k$ (or $TN_k$), if all minors of size $\leq k$ are positive (or non-negative). It is well-known that such matrices are characterized by the variation diminishing property together with the sign non-reversal property. We do away with the former, and show that $A$ is $TP_k$ if and only if every submatrix formed from at most $k$ consecutive rows and columns has the sign non-reversal property. In fact this can be strengthened to only consider test vectors in $\mathbb{R}^k$ with alternating signs. We also show a similar characterization for all $TN_k$ matrices - more strongly, both of these characterizations use a single vector (with alternating signs) for each square submatrix. These characterizations are novel, and similar in spirit to the fundamental results characterizing $TP$ matrices by Gantmacher-Krein [Compos. Math. 1937] and $P$-matrices by Gale-Nikaido [Math. Ann. 1965]. As an application, we study the interval hull $\mathbb{I}(A,B)$ of two $m \times n$ matrices $A=(a_{ij})$ and $B = (b_{ij})$. This is the collection of $C \in \mathbb{R}^{m \times n}$ such that each $c_{ij}$ is between $a_{ij}$ and $b_{ij}$. Using the sign non-reversal property, we identify a two-element subset of $\mathbb{I}(A,B)$ that detects the $TP_k$ property for all of $\mathbb{I}(A,B)$ for arbitrary $k \geq 1$. In particular, this provides a test for total positivity (of any order), simultaneously for an entire class of rectangular matrices. In parallel, we also provide a finite set to test the total non-negativity (of any order) of an interval hull $\mathbb{I}(A,B)$.
翻译:$A 是一个完全正数 (或非正数) {K$ {美元, 表示$TP_ k$ (或$TN_k$ 美元), 如果所有大小的未成年人$\leq k$是正数( 或非负数) 。 众所周知, 这种矩阵的特点是属性随符号而非反反转属性而减少。 我们不再使用前一种, 并显示美元是$TP_ k美元, 如果在最多连续的一行和列上形成的每分节( $美元) 都具有非反数的属性。 事实上, 这可以得到加强, 仅考虑以$\ mathb{R_ k$( 美元) 来进行测试矢量 。 对于每平方子, 这些属性使用单一的矢量( 有交替符号) 。 这些属性与我们 Gantmacher- Krein 之间的所有基结果相似 。