In transfer learning, training and testing data sets are drawn from different data distributions. The transfer generalization gap is the difference between the population loss on the target data distribution and the training loss. The training data set generally includes data drawn from both source and target distributions. This work presents novel information-theoretic upper bounds on the average transfer generalization gap that capture $(i)$ the domain shift between the target data distribution $P'_Z$ and the source distribution $P_Z$ through a two-parameter family of generalized $(\alpha_1,\alpha_2)$-Jensen-Shannon (JS) divergences; and $(ii)$ the sensitivity of the transfer learner output $W$ to each individual sample of the data set $Z_i$ via the mutual information $I(W;Z_i)$. For $\alpha_1 \in (0,1)$, the $(\alpha_1,\alpha_2)$-JS divergence can be bounded even when the support of $P_Z$ is not included in that of $P'_Z$. This contrasts the Kullback-Leibler (KL) divergence $D_{KL}(P_Z||P'_Z)$-based bounds of Wu et al. [1], which are vacuous under this assumption. Moreover, the obtained bounds hold for unbounded loss functions with bounded cumulant generating functions, unlike the $\phi$-divergence based bound of Wu et al. [1]. We also obtain new upper bounds on the average transfer excess risk in terms of the $(\alpha_1,\alpha_2)$-JS divergence for empirical weighted risk minimization (EWRM), which minimizes the weighted average training losses over source and target data sets. Finally, we provide a numerical example to illustrate the merits of the introduced bounds.


翻译:在传输学习中, 培训和测试数据集是从不同的数据分布中提取的。 转移一般化差距是目标数据分布上的人口损失与培训损失之间的差别。 培训数据集通常包括从源和目标分布上获取的数据。 这项工作展示了在平均传输一般化差距上的新信息理论上限, 以( i) 美元在目标数据分布 $P $ $ 美元和源分配 $P $ $ 美元之间, 以两个参数为单位, 以( alpha_ 1,\ alpha_ 2) 美元计算, 以( jensen- Jensen( JS) 差异; 和 $( ) jensen- Jhann ( JS) 之间的差额差异。 转移学生产出的敏感度为$W$ 美元 ; 数据单个样本的敏感度为 $( i) 。 对于目标数据分布在 AL1, 美元 1, 美元 和 以 美元 以 美元 以 美元 以 美元 以 以 美元 以 美元 以 美元 以 美元 以 以 以 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月17日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员