In order to build agents with a rich understanding of their environment, one key objective is to endow them with a grasp of intuitive physics; an ability to reason about three-dimensional objects, their dynamic interactions, and responses to forces. While some work on this problem has taken the approach of building in components such as ready-made physics engines, other research aims to extract general physical concepts directly from sensory data. In the latter case, one challenge that arises is evaluating the learning system. Research on intuitive physics knowledge in children has long employed a violation of expectations (VOE) method to assess children's mastery of specific physical concepts. We take the novel step of applying this method to artificial learning systems. In addition to introducing the VOE technique, we describe a set of probe datasets inspired by classic test stimuli from developmental psychology. We test a baseline deep learning system on this battery, as well as on a physics learning dataset ("IntPhys") recently posed by another research group. Our results show how the VOE technique may provide a useful tool for tracking physics knowledge in future research.
翻译:为了培养对自身环境有丰富了解的代理物,一个关键目标是赋予他们掌握直觉物理学的知识;使其有能力了解三维天体、其动态相互作用和力量反应。虽然关于该问题的一些工作采取了在诸如简易物理引擎等组成部分中建立探测数据集的方法,但其他研究的目的是直接从感官数据中提取一般物理概念。在后一种情况下,产生的一个挑战是评价学习系统。关于儿童直觉物理学知识的研究长期以来采用了一种违背预期的方法来评估儿童掌握特定物理概念的情况。我们采取了将这种方法应用于人造学习系统的新步骤。除了引入VOE技术外,我们还描述了一套由发展心理学的典型测试刺激所启发的探测数据集。我们测试了这一电池上的基线深层次学习系统,以及另一个研究组最近提供的物理学习数据集(“IntPhys”)。我们的研究结果显示,VOE技术如何为未来研究中跟踪物理知识提供有用的工具。