Dense subgraphs capture strong communities in social networks and entities possessing strong interactions in biological networks. In particular, $k$-clique counting and listing have applications in identifying important actors in a graph. However, finding $k$-cliques is computationally expensive, and thus it is important to have fast parallel algorithms. We present a new parallel algorithm for $k$-clique counting that has polylogarithmic span and is work-efficient with respect to the well-known sequential algorithm for $k$-clique listing by Chiba and Nishizeki. Our algorithm can be extended to support listing and enumeration, and is based on computing low out-degree orientations. We present a new linear-work and polylogarithmic span algorithm for computing such orientations, and new parallel algorithms for producing unbiased estimations of clique counts. Finally, we design new parallel work-efficient algorithms for approximating the $k$-clique densest subgraph. Our first algorithm gives a $1/k$-approximation and is based on iteratively peeling vertices with the lowest clique counts; our algorithm is work-efficient, but we prove that this process is P-complete and hence does not have polylogarithmic span. Our second algorithm gives a $1/(k(1+\epsilon))$-approximation, is work-efficient, and has polylogarithmic span. In addition, we implement these algorithms and propose optimizations. On a 60-core machine, we achieve 13.23-38.99x and 1.19-13.76x self-relative parallel speedup for $k$-clique counting and $k$-clique densest subgraph, respectively. Compared to the state-of-the-art parallel $k$-clique counting algorithms, we achieve a 1.31-9.88x speedup, and compared to existing implementations of $k$-clique densest subgraph, we achieve a 1.01-11.83x speedup. We are able to compute the $4$-clique counts on the largest publicly-available graph with over two hundred billion edges.
翻译:高级子图在社交网络和生物网络中有着强大的互动关系。 特别是, $k$ clique 计算和列表可以应用于在图表中识别重要行为者。 然而, 找到 $k$ clotique 计算成本昂贵, 因此必须拥有快速平行算法。 我们为 $k$ clotique 计算提供了一个新的平行算法, 它具有多logy范围, 并且对于Chiba 和 Nishizeki 在生物网络中拥有强大的互动关系。 特别是, 我们的算法可以用来支持列表和计价, 并且基于计算低水平的精确度方向。 然而, 我们为计算这样的方向, 我们提出了一个新的线性工作和多logical 范围算法, 并且为了产生公正的计算。 最后, 我们设计了一个新的平行的工作效率算法, 用来适应 $k- cloi- clotical commitial 1 。 (我们增加的算法给了$kal- dal- dal- divolatique) 和基于反复的cal lical- lical- lical- pal- pal- laxal- pal- pal- pal- laxal- lax laxal- lax a lax lax lax lax lax a lax a lax a lax a lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax la lax lax lax lax la lax la la lax lax lax lax lax lax la lax la la la la la lax la la la lax la la la la la la la la