The availability of charging stations is an important factor for promoting electric vehicles (EVs) as a carbon-friendly way of transportation. Hence, for city planners, the crucial question is where to place charging stations so that they reach a large utilization. Here, we hypothesize that the utilization of EV charging stations is driven by the proximity to points-of-interest (POIs), as EV owners have a certain limited willingness to walk between charging stations and POIs. To address our research question, we propose the use of web mining: we characterize the influence of different POIs from OpenStreetMap on the utilization of charging stations. For this, we present a tailored interpretable model that takes into account the full spatial distributions of both the POIs and the charging stations. This allows us then to estimate the distance and magnitude of the influence of different POI types. We evaluate our model with data from approx. 300 charging stations and 4,000 POIs in Amsterdam, Netherlands. Our model achieves a superior performance over state-of-the-art baselines and, on top of that, is able to offer an unmatched level of interpretability. To the best of our knowledge, no previous paper has quantified the POI influence on charging station utilization from real-world usage data by estimating the spatial proximity in which POIs are relevant. As such, our findings help city planners in identifying effective locations for charging stations.


翻译:电荷充电站的可用性是推广电动车辆(EVs)作为碳友好型运输方式的一个重要因素。因此,对于城市规划者来说,关键问题在于如何设置充电站,以便它们得到大量利用。在这里,我们假设EV充电站的利用是由离利益点(POIs)的近距离驱动的,因为EV所有者在充电站和POIs之间行走的意愿有限。为了解决我们的研究问题,我们建议使用网络采矿:我们描述开放街头地图不同POIs对充电站利用影响的特点。为此,我们提出了一个定制的可解释模型,其中考虑到对POIs和充电站的全面空间分布。这使我们能够估计不同POI类型影响的距离和规模。我们用大约300个充电站和4000个POIs的数据来评估我们的模型。我们模型比起最新水平基线,而且在上面,我们能够提供不相匹配的可解释性可解释性水平。我们所设计的可解释性解释性模型,从我们所处所处的定位的最佳空间定位定位点上,从我们所估算的最接近的定位的定位点上,没有关于我们空间定位的定位的定位的定位的定位的定位的定位的定位的定位,从我们空间定位的定位的精确定位的定位的定位的定位的定位的定位的定位的定位的定位的定位点的定位点的定位点,是对实际的精确定位的定位。

0
下载
关闭预览

相关内容

web挖掘是数据挖掘在Web上的应用,它利用数据挖掘技术从与WWW相关的资源和行为中抽取感兴趣的、有用的模式和隐含信息,涉及Web技术、数据挖掘、计算机语言学、信息学等多个领域,是一项综合技术。Web内容挖掘。Web内容挖掘是指对Web页面内容及后台交易数据库进行挖掘,从Web文档内容及其描述中的内容信息中获取有用知识的过程。 中文名 WEB挖掘 外文名 WEB mining
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员