Impostors are attackers who take over a smartphone and gain access to the legitimate user's confidential and private information. This paper proposes a defense-in-depth mechanism to detect impostors quickly with simple Deep Learning algorithms, which can achieve better detection accuracy than the best prior work which used Machine Learning algorithms requiring computation of multiple features. Different from previous work, we then consider protecting the privacy of a user's behavioral (sensor) data by not exposing it outside the smartphone. For this scenario, we propose a Recurrent Neural Network (RNN) based Deep Learning algorithm that uses only the legitimate user's sensor data to learn his/her normal behavior. We propose to use Prediction Error Distribution (PED) to enhance the detection accuracy. We also show how a minimalist hardware module, dubbed SID for Smartphone Impostor Detector, can be designed and integrated into smartphones for self-contained impostor detection. Experimental results show that SID can support real-time impostor detection, at a very low hardware cost and energy consumption, compared to other RNN accelerators.
翻译:造型者是攻击者,他们接管智能手机并获取合法用户的机密和私人信息。 本文建议采用简单的深学习算法快速检测假冒者的防御深入机制, 这可以比以前使用机器学习算法计算多种特征的最佳工作取得更好的检测准确性。 不同于先前的工作, 我们然后考虑保护用户行为( 传感器) 数据的隐私, 不在智能手机外披露这些数据。 对于这个方案, 我们提议基于经常神经网络的深学习算法, 只使用合法用户的传感器数据来学习他/ 她的正常行为。 我们提议使用预测错误分布( PED) 来提高检测准确性。 我们还展示如何设计一个最小的硬件模块, 称为智能手机变形探测器的SID, 如何设计和整合成智能手机, 以自成型的离子探测。 实验结果表明, SID 可以支持实时的外形检测, 其硬件成本和能源消耗非常低, 与其他 RNNEER 加速器相比, 。