We consider the following problem: for a given graph G and two integers k and d, can we apply a fixed graph operation at most k times in order to reduce a given graph parameter $\pi$ by at least d? We show that this problem is NP-hard when the parameter is the independence number and the graph operation is vertex deletion or edge contraction, even for fixed d=1 and when restricted to chordal graphs. We also give a polynomial time algorithm for bipartite graphs when the operation is edge contraction, the parameter is the independence number and d is fixed. Further, we complete the complexity dichotomy on H-free graphs when the parameter is the clique number and the operation is edge contraction by showing that this problem is NP-hard in ($C_3+P_1$)-free graphs even for fixed d=1. Our results answer several open questions stated in [Diner et al., Theoretical Computer Science, 746, p. 49-72 (2012)].
翻译:我们考虑了以下问题:对于给定的图形G和两个整数 k 和 d, 我们能否在大多数 k 次应用固定的图形操作, 以至少减少给定的图形参数 $\ pi$ d? 我们显示, 当参数是独立数字, 图形操作是顶点删除或边缘收缩时, 这个问题是 NP 硬的, 即使是对于固定 d=1 和限制于 chordal 图形。 当操作是边缘收缩时, 我们还给出双面图形的多元时间算法, 参数是独立数字和 d 固定的。 此外, 当参数是 cliquen 码, 而 操作是边缘收缩时, 我们完成H- free 图形的复杂二分法, 显示即使固定 d=1, 我们的结果也回答了 [Diner et al., 理论计算机科学, 746, p. 49- 72 (2012)] 中陈述的若干未决问题。