Dujmovi\'c et al (FOCS2019) recently proved that every planar graph $G$ is a subgraph of $H\boxtimes P$, where $\boxtimes$ denotes the strong graph product, $H$ is a graph of treewidth 8 and $P$ is a path. This result has found numerous applications to linear graph layouts, graph colouring, and graph labelling. The proof given by Dujmovi\'c et al is based on a similar decomposition of Pilipczuk and Siebertz (SODA2019) which is constructive and leads to an $O(n^2)$ time algorithm for finding $H$ and the mapping from $V(G)$ onto $V(H\boxtimes P)$. In this note, we show that this algorithm can be made to run in $O(n\log n)$ time.
翻译:Dujmovi\'c 等人(FOCS2019)最近证明,每张平面图$G$都是美元\boxtime P$的子集, 其中$\boxtimes表示强烈的平面图产品,$H$是树形图8和$P$是一个路径。这个结果发现线形图布局、图示颜色和图示标签有许多应用。 Dujmovi\'c 等人提供的证据是以Plippcczuk和Siebertz类似的分解法(SODA2019)为依据的,这种分解具有建设性,并导致找到$H$的O(n)2美元时间算法,以及从$V(G)到$V(H\boxtime P)的绘图。在本说明中,我们显示,这种算法可以用$O(n\log n)的时间运行。