The junction-tree representation provides an attractive structural property for organizing a decomposable graph. In this study, we present two novel stochastic algorithms, which we call the junction-tree expander and junction-tree collapser for sequential sampling of junction trees for decomposable graphs. We show that recursive application of the junction-tree expander, expanding incrementally the underlying graph with one vertex at a time, has full support on the space of junction trees with any given number of underlying vertices. On the other hand, the junction-tree collapser provides a complementary operation for removing vertices in the underlying decomposable graph of a junction tree, while maintaining the junction tree property. A direct application of our suggested algorithms is demonstrated in a sequential-Monte-Carlo setting designed for sampling from distributions on spaces of decomposable graphs. Numerical studies illustrate the utility of the proposed algorithms for combinatorial computations on decomposable graphs and junction trees. All the methods proposed in the paper are implemented in the Python library trilearn.
翻译:十字路口- 树表解为组织一个分解图提供了具有吸引力的结构属性。 在这项研究中, 我们展示了两个新型的随机算法, 我们称之为接缝- 树扩张器和接缝- 树崩溃器, 用于对交界树进行顺序取样, 以绘制分解图。 我们显示, 连接- 树扩张器的循环应用, 一次以一个顶点逐步扩展底图, 在连接树的空间上以任何一定数量的底脊支持。 另一方面, 连接- 树崩溃器提供了一种补充操作, 用于去除连接树底分解图底部的脊椎, 同时维护连接树属性 。 我们建议的算法的直接应用体现在一个顺序- 蒙特- 卡洛 设置中, 用于从分解图空间的分布中取样 。 数字研究展示了拟议算法在可分解的图形和连接树上调序算法的效用。 纸上建议的所有方法都在平坦图书馆三线中实施 。