The junction-tree representation provides an attractive structural property for organizing a decomposable graph. In this study, we present two novel stochastic algorithms, which we call the junction-tree expander and junction-tree collapser for sequential sampling of junction trees for decomposable graphs. We show that recursive application of the junction-tree expander, expanding incrementally the underlying graph with one vertex at a time, has full support on the space of junction trees with any given number of underlying vertices. On the other hand, the junction-tree collapser provides a complementary operation for removing vertices in the underlying decomposable graph of a junction tree, while maintaining the junction tree property. A direct application of our suggested algorithms is demonstrated in a sequential-Monte-Carlo setting designed for sampling from distributions on spaces of decomposable graphs. Numerical studies illustrate the utility of the proposed algorithms for combinatorial computations on decomposable graphs and junction trees. All the methods proposed in the paper are implemented in the Python library trilearn.


翻译:十字路口- 树表解为组织一个分解图提供了具有吸引力的结构属性。 在这项研究中, 我们展示了两个新型的随机算法, 我们称之为接缝- 树扩张器和接缝- 树崩溃器, 用于对交界树进行顺序取样, 以绘制分解图。 我们显示, 连接- 树扩张器的循环应用, 一次以一个顶点逐步扩展底图, 在连接树的空间上以任何一定数量的底脊支持。 另一方面, 连接- 树崩溃器提供了一种补充操作, 用于去除连接树底分解图底部的脊椎, 同时维护连接树属性 。 我们建议的算法的直接应用体现在一个顺序- 蒙特- 卡洛 设置中, 用于从分解图空间的分布中取样 。 数字研究展示了拟议算法在可分解的图形和连接树上调序算法的效用。 纸上建议的所有方法都在平坦图书馆三线中实施 。

0
下载
关闭预览

相关内容

最新《时序分类:深度序列模型》教程,172页ppt
专知会员服务
42+阅读 · 2020年11月11日
专知会员服务
52+阅读 · 2020年9月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
4+阅读 · 2019年1月1日
VIP会员
相关VIP内容
最新《时序分类:深度序列模型》教程,172页ppt
专知会员服务
42+阅读 · 2020年11月11日
专知会员服务
52+阅读 · 2020年9月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员