Equation discovery methods enable modelers to combine domain-specific knowledge and system identification to construct models most suitable for a selected modeling task. The method described and evaluated in this paper can be used as a nonlinear system identification method for gray-box modeling. It consists of two interlaced parts of modeling that are computer-aided. The first performs computer-aided identification of a model structure composed of elements selected from user-specified domain-specific modeling knowledge, while the second part performs parameter estimation. In this paper, recent developments of the equation discovery method called process-based modeling, suited for nonlinear system identification, are elaborated and illustrated on two continuous-time case studies. The first case study illustrates the use of the process-based modeling on synthetic data while the second case-study evaluates on measured data for a standard system-identification benchmark. The experimental results clearly demonstrate the ability of process-based modeling to reconstruct both model structure and parameters from measured data.
翻译:赤道发现方法使建模者能够将特定领域的知识和系统识别方法结合起来,以构建最适合选定建模任务的模型。本文件所描述和评价的方法可以用作灰箱建模的非线性系统识别方法,由计算机辅助的建模的两个相互交织的部分组成。第一个是计算机辅助的模型结构,由从用户指定的具体领域建模知识中选定的要素组成,而第二部分是参数估计。在本文件中,两个连续时间案例研究详细阐述并展示了所谓基于进程建模的方程式发现方法的最新发展情况,该方法适用于非线性系统识别。第一个案例研究说明了合成数据的基于进程建模的使用情况,而第二个案例研究则评价了标准系统定位基准的计量数据。实验结果清楚地表明了基于进程建模从计量数据中重建模型结构和参数的能力。