We consider two mobile oblivious robots that evolve in a continuous Euclidean space. We require the two robots to solve the rendezvous problem (meeting in finite time at the same location, not known beforehand) despite the possibility that one of those robots crashes unpredictably. The rendezvous is stand up indulgent in the sense that when a crash occurs, the correct robot must still meet the crashed robot on its last position. We characterize the system assumptions that enable problem solvability, and present a series of algorithms that solve the problem for the possible cases.
翻译:我们考虑的是两个在连续的欧几里得空间演变而来的移动隐蔽机器人。我们要求这两个机器人解决会合问题(在同一地点的有限时间开会,事先并不知道 ), 尽管其中一个机器人可能无法预见地坠毁。 会合是站立不动的, 意思是当坠机发生时, 正确的机器人必须仍然在最后的位置与坠毁的机器人相遇。 我们给出了系统假设的特征,让问题得以溶解, 并提出了一系列的算法来解决问题。