Advances in machine learning have enabled the prediction of immune system responses to prophylactic and therapeutic vaccines. However, the engineering task of designing vaccines remains a challenge. In particular, the genetic variability of the human immune system makes it difficult to design peptide vaccines that provide widespread immunity in vaccinated populations. We introduce a framework for evaluating and designing peptide vaccines that uses probabilistic machine learning models, and demonstrate its ability to produce designs for a SARS-CoV-2 vaccine that outperform previous designs. We provide a theoretical analysis of the approximability, scalability, and complexity of our framework.
翻译:机器学习的进展使得能够预测免疫系统对预防性和治疗性疫苗的反应,然而,设计疫苗的工程任务仍然是一项挑战,特别是人类免疫系统的遗传变异性使得难以设计为接种人口提供广泛免疫的铅化疫苗,我们引入了一种框架,用于评价和设计使用概率性机器学习模型的铅化疫苗,并展示其制作SARS-CoV-2疫苗的设计能力,这种设计优于以前的设计。我们从理论上分析了我们框架的近似性、可伸缩性和复杂性。